FC2カウンター FPGAの部屋 カーブ、直線用白線間走行用畳み込みニューラルネットワーク13(AXI4 Stream版CNN IP 1)
FC2ブログ

FPGAやCPLDの話題やFPGA用のツールの話題などです。 マニアックです。 日記も書きます。

FPGAの部屋

FPGAの部屋の有用と思われるコンテンツのまとめサイトを作りました。Xilinx ISEの初心者の方には、FPGAリテラシーおよびチュートリアルのページをお勧めいたします。

カーブ、直線用白線間走行用畳み込みニューラルネットワーク13(AXI4 Stream版CNN IP 1)

カーブ、直線用白線間走行用畳み込みニューラルネットワーク12(直線走行用の重みとバイアスでカーブのテストデータを検証)”の続き。

AXI4 Stream版白線追従走行用畳み込みニューラルネットワークIP と入れ替えるためにカーブと直線走行用のAXI4 Stream 版畳み込みニューラルネットワーク IP を作成しよう。
AXI4 Stream版白線追従走行用畳み込みニューラルネットワークIP についての情報は以下の記事を参照のこと。
AXI4 Stream版白線追従走行用畳み込みニューラルネットワークIPその1(C シミュレーション)
AXI4 Stream版白線追従走行用畳み込みニューラルネットワークIPその2(C シミュレーション2)
AXI4 Stream版白線追従走行用畳み込みニューラルネットワークIPその3(C シミュレーション、合成)

curve_conv_nn2_axis3 プロジェクトを作成した。
curve_tracing_cnn_62_171223.png

curve_conv_nn2_axis3.cpp を示す。
60 ピクセル x 45 行の画像から、56 ピクセル x 10 行を切り出して、畳み込みニューラルネットワークにかける。

// curve_conv_nn2_axis3.cpp
// 2017/09/09 by marsee
// 畳み込み層のカーネル数 2
// AXI4 Stream入力 番号出力
// 2017/09/18 : dot2[3]の出力も追加
// 2017/12/13 : 直線に加えてカーブのデータも使用して学習した
//

#include <ap_fixed.h>
#include <hls_stream.h>
#include <ap_axi_sdata.h>

#include "conv1_weight.h"
#include "conv1_bias.h"
#include "af1_weight.h"
#include "af1_bias.h"
#include "af2_weight.h"
#include "af2_bias.h"

#define REDUSED_ROW        45
#define REDUSED_COULMN    60
#define NUM_OF_KERNELS    2
#define COULMN_PIXELS    56
#define ROW_PIXELS        10
#define ALL_PIXELS        560
#define NUM_OF_OUTPUT    3

int max_ap_fixed(ap_fixed<167, AP_TRN_ZERO, AP_SAT> out[NUM_OF_OUTPUT], ap_uint<2> &out_num);

int curve_conv_nn2_axis3(hls::stream<ap_axiu<32,1,1,1> >& ins, ap_uint<2> &outs,
        ap_fixed<167, AP_TRN_ZERO, AP_SAT> dot2[NUM_OF_OUTPUT]){
#pragma HLS INTERFACE s_axilite port=dot2
#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE s_axilite port=outs
#pragma HLS INTERFACE axis register both port=ins
    ap_ufixed<80, AP_TRN_ZERO, AP_SAT> buf[ROW_PIXELS][COULMN_PIXELS];
    ap_fixed<136, AP_TRN_ZERO, AP_SAT> conv_out[NUM_OF_KERNELS][ROW_PIXELS-4][COULMN_PIXELS-4];
    ap_fixed<136, AP_TRN_ZERO, AP_SAT> pool_out[NUM_OF_KERNELS][(ROW_PIXELS-4)/2][(COULMN_PIXELS-4)/2];
    ap_fixed<167, AP_TRN_ZERO, AP_SAT> dot1[100];
    ap_axiu<32,1,1,1> pix;

    do {
#pragma HLS LOOP_TRIPCOUNT min=1 max=1 avg=1
    // user が 1になった時にフレームがスタートする
        ins >> pix;
    } while(pix.user == 0);

    // 10 x 56 に整形
    buf_copy1: for(int i=0; i<REDUSED_ROW; i++){
        buf_copy2: for(int j=0; j<REDUSED_COULMN; j++){
            if (!(i==0 && j==0))    // 最初の入力はすでに入力されている
                ins >> pix;    // AXI4-Stream からの入力

            if((i>=33 && i<33+ROW_PIXELS) && (j>=2 && j<2+COULMN_PIXELS)){
                buf[i-33][j-2] = (ap_ufixed<80, AP_TRN_ZERO, AP_SAT>)((ap_ufixed<168, AP_TRN_ZERO, AP_SAT>)(pix.data & 0xff) / 256);
            }
        }
    }

    // Convolutional Neural Network 5x5 kernel, Stride = 1, Padding = 0
    // + ReLU
    CONV1: for(int i=0; i<NUM_OF_KERNELS; i++){    // カーネルの個数
        CONV2: for(int j=0; j<ROW_PIXELS-4; j++){
            CONV3: for(int k=0; k<COULMN_PIXELS-4; k++){
                conv_out[i][j][k] = 0;
                CONV4: for(int m=0; m<5; m++){
                    CONV5: for(int n=0; n<5; n++){
                        conv_out[i][j][k] += buf[j+m][k+n] * conv1_weight[i][0][m][n];
                    }
                }
                conv_out[i][j][k] += conv1_bias[i];

                if(conv_out[i][j][k]<0)    // ReLU
                    conv_out[i][j][k] = 0;
            }
        }
    }

    // Pooling Kernel = 2 x 2, Stride = 2
    POOL1: for(int i=0; i<NUM_OF_KERNELS; i++){
        POOL2: for(int j=0; j<ROW_PIXELS-4; j += 2){
            POOL3: for(int k=0; k<COULMN_PIXELS-4; k += 2){
                POOL4: for(int m=0; m<2; m++){
                    POOL5: for(int n=0; n<2; n++){
                        if(m==0 && n==0){
                            pool_out[i][j/2][k/2] = conv_out[i][j][k];
                        } else if(pool_out[i][j/2][k/2] < conv_out[i][j+m][k+n]){
                            pool_out[i][j/2][k/2] = conv_out[i][j+m][k+n];
                        }
                    }
                }
            }
        }
    }

    af1_dot1: for(int col=0; col<100; col++){
        dot1[col] = 0;
        af1_dot2: for(int i=0; i<NUM_OF_KERNELS; i++){
            af1_dot3: for(int j=0; j<(ROW_PIXELS-4)/2; j++){
                af1_dot4: for(int k=0; k<(COULMN_PIXELS-4)/2; k++){
                    dot1[col] += pool_out[i][j][k]*af1_weight[i*((ROW_PIXELS-4)/2)*((COULMN_PIXELS-4)/2)+j*((COULMN_PIXELS-4)/2)+k][col];
                }
            }
        }
        dot1[col] += af1_bias[col];

        if(dot1[col] < 0)    // ReLU
            dot1[col] = 0;
    }

    af2_dot1: for(int col=0; col<NUM_OF_OUTPUT; col++){
        dot2[col] = 0;
        af2_dot2: for(int row=0; row<100; row++){
            dot2[col] += dot1[row]*af2_weight[row][col];
        }
        dot2[col] += af2_bias[col];
    }

    max_ap_fixed(dot2, outs);

    return(0);
}

int max_ap_fixed(ap_fixed<167, AP_TRN_ZERO, AP_SAT> out[NUM_OF_OUTPUT], ap_uint<2> &out_num){
    int max_id;
    ap_fixed<167, AP_TRN_ZERO, AP_SAT> max;

    for(int i=0; i<NUM_OF_OUTPUT; i++){
        if(i == 0){
            max = out[0];
            max_id = 0;
        }else if(out[i]>max){
            max = out[i];
            max_id = i;
        }
    }
    out_num = (ap_uint<2>)max_id;

    return(0);
}


curve_conv_nn2_axis3_tb.cpp を示す。
このテストベンチは、800 ピクセル x 600 行の BMP 画像を白黒変換し、60 ピクセル x 45 行にサイズ・ダウンした後にで、curve_conv_nn2_axis3 をコールする。 curve_conv_nn2_axis3 の判定が間違っていたら表示する。

// curve_conv_nn2_axis3_tb.cpp
// 2017/09/09 by marsee
//
// 2017/09/18 : straight_conv_nn2_axis3.cpp に dot2[3]の出力も追加
// 2017/12/13 : 直線に加えてカーブのデータも使用して学習した
//

#include <iostream>
#include "hls_opencv.h"
#include "ap_axi_sdata.h"
#include "hls_video.h"

#define MAX_HEIGHT    600
#define MAX_WIDTH    800

typedef hls::stream<ap_axiu<32,1,1,1> > AXI_STREAM;
typedef hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC3> RGB_IMAGE;
typedef hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1> GRAY_IMAGE;

using namespace cv;

#define NUM_OF_OUTPUT    3

//#define STRAIGHT_LOOP_COUNT    41    // train_images
//#define LR_LOOP_COUNT            18    // train_images
#define STRAIGHT_LOOP_COUNT        35    // test_images
#define LR_LOOP_COUNT            12    // test_images
//#define STRAIGHT_LOOP_COUNT    1    // for C/RTL Co-Simulation
//#define LR_LOOP_COUNT            1    // for C/RTL Co-Simulation

//#define STRAIGHT_IMAGE_NAME     "train_images_171129/straight"
//#define LEFT_TURN_IMAGE_NAME    "train_images_171129/left_turn"
//#define RIGHT_TURN_IMAGE_NAME   "train_images_171129/right_turn"
#define STRAIGHT_IMAGE_NAME     "test_images_171129/straight_test"
#define LEFT_TURN_IMAGE_NAME    "test_images_171129/left_turn_test"
#define RIGHT_TURN_IMAGE_NAME   "test_images_171129/right_turn_test"

int curve_conv_nn2_axis3(hls::stream<ap_axiu<32,1,1,1> >& ins, ap_uint<2> &outs,
        ap_fixed<167, AP_TRN_ZERO, AP_SAT> dot2[NUM_OF_OUTPUT]);
int resize_gray(AXI_STREAM& ins, AXI_STREAM& outs);
int main_output_loop(char *buf, int loop_count, int correct_data);

int main () {
    char buf[200];

    sprintf(buf, "%s", STRAIGHT_IMAGE_NAME);
    main_output_loop(buf, STRAIGHT_LOOP_COUNT, 1);

    sprintf(buf, "%s", LEFT_TURN_IMAGE_NAME);
    main_output_loop(buf, LR_LOOP_COUNT, 0);

    sprintf(buf, "%s", RIGHT_TURN_IMAGE_NAME);
    main_output_loop(buf, LR_LOOP_COUNT, 2);

    return(0);
}

int main_output_loop(char *buf, int loop_count, int correct_data){
    char bmp_file_name[200];
    ap_uint<2> outs;
    AXI_STREAM src_axi, dst_axi;
    Mat src;
    ap_fixed<167, AP_TRN_ZERO, AP_SAT> dot2[NUM_OF_OUTPUT];
    int err_num = 0;

    for(int i=0; i<loop_count; i++){
        sprintf(bmp_file_name, "%s%d.bmp", buf, i);

        // OpenCV で 画像を読み込む
        src = imread(bmp_file_name);

        // BGR から RGBへ変換
        Mat src_rgb;
        cvtColor(src, src_rgb, CV_BGR2RGB);

        // Mat フォーマットから AXI4 Stream へ変換
        cvMat2AXIvideo(src_rgb, src_axi);

        // resize_gray() 関数をコール
        resize_gray(src_axi, dst_axi);

        curve_conv_nn2_axis3(dst_axi, outs, dot2);

        if((int)outs != correct_data){
            printf("*%s\n", bmp_file_name);
            printf("correct data = %d, outs = %d\n", correct_data, (int)outs);
            for(int i=0; i<NUM_OF_OUTPUT; i++)
                printf("dot2[%d] = %f ", i, (float)dot2[i]);
            printf("\n");
            err_num++;
        }
    }
    if(correct_data == 1)
        printf("Straight error is %d\n\n", err_num);
    else if(correct_data == 0)
        printf("Left error is %d\n\n", err_num);
    else // if(correct_data == 2)
        printf("Right error is %d\n\n", err_num);

    return(0);
}

int resize_gray(AXI_STREAM& ins, AXI_STREAM& outs){

    RGB_IMAGE org_img(600800);
    GRAY_IMAGE org_img_g(600800);
    GRAY_IMAGE resize_img_g(4560);
    RGB_IMAGE resize_img(4560);

    hls::AXIvideo2Mat(ins, org_img);
    hls::CvtColor<HLS_RGB2GRAY>(org_img, org_img_g);
    hls::Resize(org_img_g, resize_img_g);
    hls::CvtColor<HLS_GRAY2RGB>(resize_img_g, resize_img);
    hls::Mat2AXIvideo(resize_img, outs);

    return(0);
}


C シミュレーションを行った。結果を示す。
curve_tracing_cnn_63_171223.png

INFO: [SIM 2] *************** CSIM start ***************
INFO: [SIM 4] CSIM will launch GCC as the compiler.
   Compiling ../../../curve_conv_nn2_axis3_tb.cpp in debug mode
   Generating csim.exe
Straight error is 0

*test_images_171129/left_turn_test8.bmp
correct data = 0, outs = 1
dot2[0] = -0.435547 dot2[1] = 1.232422 dot2[2] = -4.697266 
Left error is 1

Right error is 0

INFO: [SIM 1] CSim done with 0 errors.
INFO: [SIM 3] *************** CSIM finish ***************


エラーは左旋回の時の1個だけだった。59 個のテスト画像で判別しているので、58 / 59 x 100 ≒ 98.3 % になった。十分だと思う。
  1. 2017年12月23日 04:36 |
  2. DNN
  3. | トラックバック:0
  4. | コメント:0

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック URL
http://marsee101.blog.fc2.com/tb.php/4014-ca3ca1ae
この記事にトラックバックする(FC2ブログユーザー)