FC2カウンター FPGAの部屋 2017年01月09日
FC2ブログ

FPGAやCPLDの話題やFPGA用のツールの話題などです。 マニアックです。 日記も書きます。

FPGAの部屋

FPGAの部屋の有用と思われるコンテンツのまとめサイトを作りました。Xilinx ISEの初心者の方には、FPGAリテラシーおよびチュートリアルのページをお勧めいたします。

Vivado HLS のソースコードをSDx で試す2(memcpy() を使った第3段階のコード)

Vivado HLS のソースコードをSDx で試す1(memcpy() を使った第2段階のコード)”の続き。

前回はViavdo HLS のソースコードをわずかに変更しただけのAXI4 Master のラプラシアンフィルタをSDSoC でビルドすることができた。今回は前回のよりも性能が良いmemcpy() を使った第3段階のコードをSDSoC でビルドしてみよう。

lap_filter3 プロジェクトを作成し、”Vivado HLS勉強会4(AXI4 Master)を公開しました”のlap_filter_tb.c と laplacian_filter3.c の中身を SDSoC の lap_filter3 プロジェクトにコピーした。
volatile は付いているとエラーになるので外した。
SDx_v2016_3_121_170108.png

lap_fitler_axim() 関数をハードウェア化に指定して、ビルドを行った。
Vivado のレポートを見た。
BRAMは前回 13 % のところ、12 % で減っている。DSP は 6 % から 14 % で大幅に増えている。演算器を増やしているので当然そうなる。
SDx_v2016_3_122_170108.png

ブロックデザインを示す。これは前回と一緒だ。
SDx_v2016_3_123_170108.png

Vivado HLS のSynthesis Report を示す。
SDx_v2016_3_124_170108.png

タイミングはエラーになっているが、Vivado でインプリメントすると大丈夫のようだ。これで、動作周波数が取れない場合はどうすれば良いのかな?そうだ、SDSoC で動作周波数を設定するところがあったので、それを変更すれば良いのだろう?

次に、実際にZYBO で確かめてみよう。
workspace\lap_filter2\SDRelease\sd_card の内容をMicro SD カードにコピーした。
ZYBO に挿入して電源ONした。
Linux が立ち上がった。
cd /mnt./lap_filter3.elf を実行した。
SDx_v2016_3_125_170108.png

ソフトウェアの実行時間の下5回の平均は、約 51.8 ms だった。
ハードウエアの実行時間の下5回の平均は、約 14.9 ms だった。
ハードウェアの実行時間/ソフトウェアの実行時間 ≒ 0.29 倍、つまり、ハードウェアの性能はソフトウェアの約 3.48 倍ということになった。
やはり、ハードウエアの実行時間のほうが短くなった。

laplacian_filter3.c を貼っておく。

// laplacian_filter3.c
// m_axi offset=slave version
// 2015/08/26
//

#include <stdio.h>
#include <string.h>

//#define HORIZONTAL_PIXEL_WIDTH    64
//#define VERTICAL_PIXEL_WIDTH    48
#define HORIZONTAL_PIXEL_WIDTH    800
#define VERTICAL_PIXEL_WIDTH    600
#define ALL_PIXEL_VALUE    (HORIZONTAL_PIXEL_WIDTH*VERTICAL_PIXEL_WIDTH)

int laplacian_fil(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2);
int conv_rgb2y(int rgb);

int lap_filter_axim(int *cam_fb, int *lap_fb)
{
    #pragma HLS INTERFACE s_axilite port=return

#pragma HLS INTERFACE m_axi depth=3072 port=cam_fb offset=slave
#pragma HLS INTERFACE m_axi depth=3072 port=lap_fb offset=slave

    int line_buf[3][HORIZONTAL_PIXEL_WIDTH];
#pragma HLS array_partition variable=line_buf block factor=3 dim=1
#pragma HLS resource variable=line_buf core=RAM_2P

    int lap_buf[HORIZONTAL_PIXEL_WIDTH];
    int x, y;
    int lap_fil_val;
    int a, b;
    int fl, sl, tl;
    int line_sel;
    int prev[3],current[3],next[3];    // 0->1ライン目, 1->2ライン目, 2->3ライン目, prev->1pixel前, current->現在, next->次pixel
#pragma HLS array_partition variable=prev complete dim=0
#pragma HLS array_partition variable=current complete dim=0
#pragma HLS array_partition variable=next complete dim=0


    // RGB値をY(輝度成分)のみに変換し、ラプラシアンフィルタを掛けた。
    Loop0: for (y=0, line_sel=0; y<VERTICAL_PIXEL_WIDTH-1; y++){
        // 最初のライン, y=1 012, y=2 120, y=3 201, y=4 012
        switch(line_sel){
            case 1 :
                fl = 0; sl = 1; tl = 2;
                break;
            case 2 :
                fl = 1; sl = 2; tl = 0;
                break;
            case 3 :
                fl = 2; sl = 0; tl = 1;
                break;
            default :
                fl = 0; sl = 1; tl = 2;
        }

        if (y == 1){
            Loop1: for (a=0; a<3; a++){
 // 3ライン分
                memcpy(line_buf[a], (const int*)&cam_fb[a*(HORIZONTAL_PIXEL_WIDTH)], HORIZONTAL_PIXEL_WIDTH*sizeof(int));
            }
        }else// 最初のラインではないので、1ラインだけ読み込む。すでに他の2ラインは読み込まれている
            memcpy(line_buf[tl], (const int*)&cam_fb[(y+1)*(HORIZONTAL_PIXEL_WIDTH)], HORIZONTAL_PIXEL_WIDTH*sizeof(int));
        }
        if (y==0 || y==VERTICAL_PIXEL_WIDTH-1){
            Loop2: for(b=0; b<HORIZONTAL_PIXEL_WIDTH; b++){
                lap_buf[b] = 0;
            }
        } else {
            next[0] = conv_rgb2y(line_buf[fl][0]);
            next[1] = conv_rgb2y(line_buf[sl][0]);
            next[2] = conv_rgb2y(line_buf[tl][0]);

            Loop3: for (x = 0; x < HORIZONTAL_PIXEL_WIDTH; x++){
                if (x == 0 || x == HORIZONTAL_PIXEL_WIDTH-1){
                    lap_fil_val = 0;

                    current[0] = next[0];
                    next[0] = conv_rgb2y(line_buf[fl][1]);

                    current[1] = next[1];
                    next[1] = conv_rgb2y(line_buf[sl][1]);

                    current[2] = next[2];
                    next[2] = conv_rgb2y(line_buf[tl][1]);
                }else{
                    prev[0] = current[0];
                    current[0] = next[0];
                    next[0] = conv_rgb2y(line_buf[fl][x+1]);

                    prev[1] = current[1];
                    current[1] = next[1];
                    next[1] = conv_rgb2y(line_buf[sl][x+1]);

                    prev[2] = current[2];
                    current[2] = next[2];
                    next[2] = conv_rgb2y(line_buf[tl][x+1]);
#pragma HLS PIPELINE II=1
                    lap_fil_val = laplacian_fil(prev[0], current[0], next[0],
                                                prev[1], current[1], next[1],
                                                prev[2], current[2], next[2]);
                }
                lap_buf[x] = (lap_fil_val<<16)+(lap_fil_val<<8)+lap_fil_val; // RGB同じ値を入れる
            }
        }
        memcpy((int*)&lap_fb[y*(HORIZONTAL_PIXEL_WIDTH)], (const int*)lap_buf, HORIZONTAL_PIXEL_WIDTH*sizeof(int));

        line_sel++;
        if (line_sel > 3){
            line_sel = 1;
        }
    }

    return(0);
}

// RGBからYへの変換
// RGBのフォーマットは、{8'd0, R(8bits), G(8bits), B(8bits)}, 1pixel = 32bits
// 輝度信号Yのみに変換する。変換式は、Y =  0.299R + 0.587G + 0.114B
// "YUVフォーマット及び YUV<->RGB変換"を参考にした。http://vision.kuee.kyoto-u.ac.jp/~hiroaki/firewire/yuv.html
// 2013/09/27 : line[sl]oat を止めて、すべてint にした
int conv_rgb2y(int rgb){
    int r, g, b, y_f;
    int y;

    b = rgb & 0xff;
    g = (rgb>>8) & 0xff;
    r = (rgb>>16) & 0xff;

    y_f = 77*r + 150*g + 29*b; //y_f = 0.299*r + 0.587*g + 0.114*b;の係数に256倍した
    y = y_f >> 8// 256で割る

    return(y);
}

// ラプラシアンフィルタ
// x0y0 x1y0 x2y0 -1 -1 -1
// x0y1 x1y1 x2y1 -1  8 -1
// x0y2 x1y2 x2y2 -1 -1 -1
int laplacian_fil(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2)
{
    int y;

    y = -x0y0 -x1y0 -x2y0 -x0y1 +8*x1y1 -x2y1 -x0y2 -x1y2 -x2y2;
    if (y<0)
        y = 0;
    else if (y>255)
        y = 255;
    return(y);
}

  1. 2017年01月09日 07:46 |
  2. SDSoC
  3. | トラックバック:0
  4. | コメント:0