FC2カウンター FPGAの部屋 テンプレートで書いた畳み込みニューラルネットワーク1(ソースコード)
fc2ブログ

FPGAやCPLDの話題やFPGA用のツールの話題などです。 マニアックです。 日記も書きます。

FPGAの部屋

FPGAの部屋の有用と思われるコンテンツのまとめサイトを作りました。Xilinx ISEの初心者の方には、FPGAリテラシーおよびチュートリアルのページをお勧めいたします。

テンプレートで書いた畳み込みニューラルネットワーク1(ソースコード)

今まで作ってきたテンプレートで書いた各層をつないで、畳み込みニューラルネットワーク(CNN)を構築する。層がテンプレートで書かれているので、パラメータを入れれば簡単に?いろいろなCNN をFPGA で構成することができるはず。。。

さて、最初に、all_layers_template.h を貼っておく。

// all_layers_templapte.h
// 2018/03/13 by marsee
//

#ifndef __ALL_LAYER_TEMPLATE_H__
#define __ALL_LAYER_TEMPLATE_H__
#include <ap_fixed.h>

#define NUMBER_OF_OUTPUT_LAYER    3

typedef ap_uint<2> output_type;

typedef ap_fixed<12,7,AP_TRN,AP_WRAP> out_affine_type;
#endif


all_layers_template.cpp を貼っておく。

// all_layers_template.cpp
// 2018/05/10 by marsee
//

#include <ap_int.h>
#include <hls_stream.h>
#include <ap_axi_sdata.h>
#include <hls_video.h>

#include "layer_general.h"
#include "all_layers_template.h"

int input_layer(hls::stream<ap_axiu<32,1,1,1> >&ins,
    hls::stream<ap_fixed_axis<9,1,1,1> >&outs);

int conv_layer1(hls::stream<ap_fixed_axis<9,1,1,1> >& ins,
    hls::stream<ap_fixed_axis<16,6,2,1> >& outs);

int relu_conv1(hls::stream<ap_fixed_axis<16,6,2,1> >& ins,
    hls::stream<ap_fixed_axis<16,6,2,1> >& outs);

int max_pooling(hls::stream<ap_fixed_axis<16,6,2,1> >& ins,
    hls::stream<ap_fixed_axis<16,6,2,1> >& outs);

int affine_layer1(hls::stream<ap_fixed_axis<16,6,2,1> >& ins,
    hls::stream<ap_fixed_axis<19,7,1,1> >& outs);

int relu_affine1(hls::stream<ap_fixed_axis<19,7,1,1> >& ins,
    hls::stream<ap_fixed_axis<19,7,1,1> >& outs);

int affine_layer2(hls::stream<ap_fixed_axis<19,7,1,1> >& ins,
    hls::stream<ap_fixed_axis<12,7,1,1> >& outs);

int output_layer(hls::stream<ap_fixed_axis<12,7,1,1> >& ins, output_type& output,
    out_affine_type dot2[NUMBER_OF_OUTPUT_LAYER]);

int all_layers(hls::stream<ap_axiu<32,1,1,1> >& ins, output_type& output,
    out_affine_type dot2[NUMBER_OF_OUTPUT_LAYER]){
#pragma HLS INTERFACE s_axilite port=output
#pragma HLS INTERFACE s_axilite port=dot2
#pragma HLS ARRAY_PARTITION variable=dot2 complete dim=1
#pragma HLS DATAFLOW
#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE axis register both port=ins

    hls::stream<ap_fixed_axis<9,1,1,1> > outs_input_layer;
//#pragma HLS STREAM variable=outs_input_layer depth=560 dim=1
    hls::stream<ap_fixed_axis<16,6,2,1> > outs_conv_layer;
//#pragma HLS STREAM variable=outs_conv_layer depth=312 dim=1
    hls::stream<ap_fixed_axis<16,6,2,1> > outs_relu_conv1;
//#pragma HLS STREAM variable=outs_relu depth=312 dim=1
    hls::stream<ap_fixed_axis<16,6,2,1> > outs_max_pooling;
//#pragma HLS STREAM variable=outs_max_pooling depth=78 dim=1
    hls::stream<ap_fixed_axis<19,7,1,1> > outs_affine_layer1;
//#pragma HLS STREAM variable=outs_affine_layer1 depth=100 dim=1
    hls::stream<ap_fixed_axis<19,7,1,1> > outs_relu_affine1;
//#pragma HLS STREAM variable=outs_relu_affine1 depth=100 dim=1
    hls::stream<ap_fixed_axis<12,7,1,1> > outs_affine_layer2;
//#pragma HLS STREAM variable=outs_affine_layer2 depth=3 dim=1

    input_layer(ins, outs_input_layer);
    conv_layer1(outs_input_layer, outs_conv_layer);
    relu_conv1(outs_conv_layer, outs_relu_conv1);
    max_pooling(outs_relu_conv1, outs_max_pooling);
    affine_layer1(outs_max_pooling, outs_affine_layer1);
    relu_affine1(outs_affine_layer1, outs_relu_affine1);
    affine_layer2(outs_relu_affine1, outs_affine_layer2);
    output_layer(outs_affine_layer2, output, dot2);

    return(0);
}


なお各層の入力ポートと出力ポートのINTERFACE指示子はコメントアウトしてある。
all_layers_soft.cpp を貼っておく。

// all_layers_soft.cpp
// 2018/03/14 by marsee
//

#include <ap_int.h>
#include <hls_stream.h>
#include <ap_axi_sdata.h>
#include <hls_video.h>

#include "all_layers.h"

int conv_layer_soft(hls::stream<ap_axiu<32,1,1,1> >& ins,
    hls::stream<float2_axis<1,1,1> >& outs);

int relu_soft(hls::stream<float2_axis<1,1,1> >& ins,
        hls::stream<float2_axis<1,1,1> >& outs);

int max_pooling_soft(hls::stream<float2_axis<1,1,1> >& ins,
        hls::stream<float2_axis<1,1,1> >& outs);

int affine_layer1_soft(hls::stream<float2_axis<1,1,1> >& ins,
        hls::stream<float1_axis<1,1,1> >& outs);

int relu_affine1_soft(hls::stream<float1_axis<1,1,1> >& ins,
        hls::stream<float1_axis<1,1,1> >& outs);

int affine_layer2_soft(hls::stream<float1_axis<1,1,1> >& ins,
        hls::stream<float1_axis<1,1,1> >& outs);

int output_layer_soft(hls::stream<float1_axis<1,1,1> >& ins, output_type& output,
        float dot2[NUMBER_OF_OUTPUT_LAYER]);

int all_layers_soft(hls::stream<ap_axiu<32,1,1,1> >& ins, output_type& output,
        float dot2[NUMBER_OF_OUTPUT_LAYER]){

    hls::stream<float2_axis<1,1,1> > outs_conv_layer_soft;
    hls::stream<float2_axis<1,1,1> > outs_relu_soft;
    hls::stream<float2_axis<1,1,1> > outs_max_pooling_soft;
    hls::stream<float1_axis<1,1,1> > outs_affine_layer1_soft;
    hls::stream<float1_axis<1,1,1> > outs_relu_affine1_soft;
    hls::stream<float1_axis<1,1,1> > outs_affine_layer2_soft;

    conv_layer_soft(ins, outs_conv_layer_soft);
    relu_soft(outs_conv_layer_soft, outs_relu_soft);
    max_pooling_soft(outs_relu_soft, outs_max_pooling_soft);
    affine_layer1_soft(outs_max_pooling_soft, outs_affine_layer1_soft);
    relu_affine1_soft(outs_affine_layer1_soft, outs_relu_affine1_soft);
    affine_layer2_soft(outs_relu_affine1_soft, outs_affine_layer2_soft);
    output_layer_soft(outs_affine_layer2_soft, output, dot2);

    return(0);
}


テストベンチの all_layers_template_tb.cpp を貼っておく。

// all_layers_template_tb.cpp
// 2018/05/12 by marsee
//

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <ap_int.h>
#include <hls_stream.h>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <math.h>
#include <ap_axi_sdata.h>
#include <hls_video.h>

#include "layer_general.h"
#include "all_layers_template.h"

#include "curve_data_0_100.h"
//#include "curve_data_2500_2600.h"
//#include "curve_data_5000_5100.h"

#define ALL_DATA_NUM   300
#define NUM_OF_KERNELS 2
#define COULMN_PIXELS 56
#define ROW_PIXELS 10
#define ALL_PIXELS 560
#define NUM_OF_OUTPUT 3

#define NUM_ITERATIONS    300 // C Simulation
//#define NUM_ITERATIONS    2 // C/RTL CoSimulation

int all_layers(hls::stream<ap_axiu<32,1,1,1> >& ins, output_type& output,
        out_affine_type dot2[NUMBER_OF_OUTPUT_LAYER]);

int all_layers_soft(hls::stream<ap_axiu<32,1,1,1> >& ins, output_type& output,
        float dot2[NUMBER_OF_OUTPUT_LAYER]);

int main(){
    using namespace std;

    hls::stream<ap_axiu<32,1,1,1> > ins;
    hls::stream<ap_axiu<32,1,1,1> > ins_soft;
    output_type output, output_soft;
    out_affine_type dot2[NUMBER_OF_OUTPUT_LAYER];
    float dot2_soft[NUMBER_OF_OUTPUT_LAYER];
    ap_axiu<32,1,1,1> pix;
    int hw_err_cnt = 0;
    int sw_err_cnt = 0;

    for(int i=0; i<NUM_ITERATIONS; i++){
        // ins に入力データを用意する
        for(int m=0; m<5; m++){    // dummy data
            pix.user = 0;
            pix.data = ap_uint<32>(m);
            ins << pix;
        }

        for(int y=0; y<ROW_PIXELS; y++){
            for(int x=0; x<COULMN_PIXELS; x++){
                // 1 画面分のデータを ins、ins_soft に入力する
                pix.data = ap_uint<32>(t_train_256[i][y*COULMN_PIXELS+x]);

                if (x==0 && y==0)    // 最初のデータの時に TUSER を 1 にする
                    pix.user = 1;
                else
                    pix.user = 0;

                if (x == COULMN_PIXELS-1// 行の最後でTLASTをアサートする
                    pix.last = 1;
                else
                    pix.last = 0;

                ins << pix;
                ins_soft << pix;
            }
        }

        all_layers(ins, output, dot2);
        all_layers_soft(ins_soft, output_soft, dot2_soft);

        int t_test_num = 0;
        for(int m=0; m<NUMBER_OF_OUTPUT_LAYER; m++){
            if(t_test[i][m] == 1.0f){
                t_test_num = m;
                break;
            }
        }
        // out と out_soft を比較する
        /* cout << "output" << " = " << int(output) << " output_soft = " << int(output_soft) << endl;        for(int j=0; j<NUMBER_OF_OUTPUT_LAYER; j++){            cout << "dot2[" << j << "] = " << float(dot2[j]) << " dot2_soft[" << j << "] = " << dot2_soft[j] << endl;        } */
        if(int(output) != t_test_num){
            cout << "hw_error: i = " << i << " output = " << int(output) << " t_test_num = " << t_test_num << endl;
            hw_err_cnt++;
            //return(1);
        }
        if(int(output_soft) != t_test_num){
            cout << "sw_error: i = "<< i << " output_soft = " << int(output_soft) << " t_test_num" " = " << t_test_num << endl;
            sw_err_cnt++;
            //return(1);
        }
        if(int(output) != t_test_num || int(output_soft) != t_test_num){
            for(int j=0; j<NUMBER_OF_OUTPUT_LAYER; j++){
                cout << "dot2[" << j << "] = " << fixed << setprecision(8) << float(dot2[j]) << "    dot2_soft[" << j << "] = " << dot2_soft[j] << endl;
            }
            cout << endl;
        }
    }
    cout << "hw_err_cnt = " << hw_err_cnt << " sw_err_cnt = " << sw_err_cnt << endl;

    return(0);
}

  1. 2018年05月15日 04:47 |
  2. DNN
  3. | トラックバック:0
  4. | コメント:0

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック URL
https://marsee101.blog.fc2.com/tb.php/4168-4222f1e6
この記事にトラックバックする(FC2ブログユーザー)