x_train shape: (34650, 1, 10, 56)
y_train shape: (34650,)
x_train shape: (34650, 10, 56, 1)
34650 train samples
26550 test samples
Train on 34650 samples, validate on 26550 samples
Epoch 1/8
34650/34650 [==============================] - 5s 154us/step - loss: 0.4760 - acc: 0.8065 - val_loss: 0.2648 - val_acc: 0.9200
Epoch 2/8
34650/34650 [==============================] - 5s 150us/step - loss: 0.2083 - acc: 0.9254 - val_loss: 0.2098 - val_acc: 0.9264
Epoch 3/8
34650/34650 [==============================] - 5s 151us/step - loss: 0.1419 - acc: 0.9484 - val_loss: 0.1368 - val_acc: 0.9551
Epoch 4/8
34650/34650 [==============================] - 5s 149us/step - loss: 0.1098 - acc: 0.9595 - val_loss: 0.1200 - val_acc: 0.9601
Epoch 5/8
34650/34650 [==============================] - 5s 150us/step - loss: 0.0908 - acc: 0.9668 - val_loss: 0.1065 - val_acc: 0.9650
Epoch 6/8
34650/34650 [==============================] - 5s 149us/step - loss: 0.0753 - acc: 0.9724 - val_loss: 0.1002 - val_acc: 0.9650
Epoch 7/8
34650/34650 [==============================] - 5s 152us/step - loss: 0.0645 - acc: 0.9763 - val_loss: 0.0983 - val_acc: 0.9666
Epoch 8/8
34650/34650 [==============================] - 5s 149us/step - loss: 0.0546 - acc: 0.9805 - val_loss: 0.0872 - val_acc: 0.9705
hw_err_cnt = 13, sw_err_cnt = 16
hw accuracy = 95.666665%, sw accuracy = 94.666666%
hw_err_cnt = 4, sw_err_cnt = 6
hw accuracy = 98.666668%, sw accuracy = 98.000002%
hw_err_cnt = 27, sw_err_cnt = 25
hw accuracy = 91.000003%, sw accuracy = 91.666669%
日 | 月 | 火 | 水 | 木 | 金 | 土 |
---|---|---|---|---|---|---|
- | - | - | - | - | 1 | 2 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | - | - | - | - | - | - |