FC2カウンター FPGAの部屋 Genasys ZU で Adam Taylor さんの”High Performance Imaging”をやってみる5(Vivado HLSでラプラシアン・フィルタを実装する2)
fc2ブログ

FPGAやCPLDの話題やFPGA用のツールの話題などです。 マニアックです。 日記も書きます。

FPGAの部屋

FPGAの部屋の有用と思われるコンテンツのまとめサイトを作りました。Xilinx ISEの初心者の方には、FPGAリテラシーおよびチュートリアルのページをお勧めいたします。

Genasys ZU で Adam Taylor さんの”High Performance Imaging”をやってみる5(Vivado HLSでラプラシアン・フィルタを実装する2)

Genasys ZU で Adam Taylor さんの”High Performance Imaging”をやってみる4(Vivado HLSでラプラシアン・フィルタを実装する1)”の続き。

High Performance Imaging”の Vivado 2019.1 プロジェクトにラプラシアン・フィルタを入れたいということで、 Gamma LUT の m_axis_video の出力に入れることにした。そのAXI4-Stream の画像フォーマットを調査した。
今回は、 Gamma LUT の m_axis_video の出力に入れるためのラプラシアン・フィルタの Vivado HLS 2019.2 プロジェクトを作成し、C シミュレーションを行った。

ヘッダ・ファイルの lap_filter_RBG10.h を示す。

// lap_filter_RBG10.h
// 2020/08/24 by marsee
//

//#define HORIZONTAL_PIXEL_WIDTH    1920
//#define VERTICAL_PIXEL_WIDTH    1080

#define HORIZONTAL_PIXEL_WIDTH    64
#define VERTICAL_PIXEL_WIDTH    48

#define ALL_PIXEL_VALUE    (HORIZONTAL_PIXEL_WIDTH*VERTICAL_PIXEL_WIDTH)


ラプラシアン・フィルタのソースコードの lap_filter_RBG10.cpp を示す。

// lap_filter_RBG10.cpp
// 2020/08/24 by marsee
// RBG 10ビットずつ
//

#include <stdio.h>
#include <string.h>
#include <ap_int.h>
#include <hls_stream.h>
#include <ap_axi_sdata.h>

#include "lap_filter_RBG10.h"

int laplacian_fil(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2);
int conv_rgb2y(int rgb);

int lap_filter_rbg10(hls::stream<ap_axis<32,1,1,1> >& ins, hls::stream<ap_axis<32,1,1,1> >& outs){
#pragma HLS INTERFACE axis register both port=ins
#pragma HLS INTERFACE axis register both port=outs
#pragma HLS INTERFACE s_axilite port=return

    ap_axis<32,1,1,1> pix;
    ap_axis<32,1,1,1> lap;

    unsigned int line_buf[2][HORIZONTAL_PIXEL_WIDTH];
#pragma HLS array_partition variable=line_buf block factor=2 dim=1
#pragma HLS resource variable=line_buf core=RAM_2P

    int pix_mat[3][3];
#pragma HLS array_partition variable=pix_mat complete

    int lap_fil_val;

    Loop1 : do {    // user が 1になった時にフレームがスタートする
#pragma HLS LOOP_TRIPCOUNT min=1 max=1 avg=1
        ins >> pix;
    } while(pix.user == 0);

    Loop2 : for (int y=0; y<VERTICAL_PIXEL_WIDTH; y++){
        Loop3 : for (int x=0; x<HORIZONTAL_PIXEL_WIDTH; x++){
#pragma HLS PIPELINE II=1
            if (!(x==0 && y==0))    // 最初の入力はすでに入力されている
                ins >> pix; // AXI4-Stream からの入力

            Loop4 : for (int k=0; k<3; k++){
                Loop5 : for (int m=0; m<2; m++){
#pragma HLS UNROLL
                    pix_mat[k][m] = pix_mat[k][m+1];
                }
            }
            pix_mat[0][2] = line_buf[0][x];
            pix_mat[1][2] = line_buf[1][x];

            int y_val = conv_rgb2y(pix.data);
            pix_mat[2][2] = y_val;

            line_buf[0][x] = line_buf[1][x];    // 行の入れ替え
            line_buf[1][x] = y_val;

            lap_fil_val = laplacian_fil(    pix_mat[0][0], pix_mat[0][1], pix_mat[0][2],
                                            pix_mat[1][0], pix_mat[1][1], pix_mat[1][2],
                                            pix_mat[2][0], pix_mat[2][1], pix_mat[2][2]);
            lap.data = (lap_fil_val<<20)+(lap_fil_val<<10)+lap_fil_val; // RBG同じ値を入れる

            if (x<2 || y<2) // 最初の2行とその他の行の最初の2列は無効データなので0とする
                lap.data = 0;

            if (x==0 && y==0) // 最初のデータでは、TUSERをアサートする
                lap.user = 1;
            else
                lap.user = 0;

            if (x == (HORIZONTAL_PIXEL_WIDTH-1))    // 行の最後で TLAST をアサートする
                lap.last = 1;
            else
                lap.last = 0;

            outs << lap;    // AXI4-Stream へ出力
        }
    }

    return 0;
}

// RGBからYへの変換
// RGBのフォーマットは、{8'd0, R(8bits), G(8bits), B(8bits)}, 1pixel = 32bits
// 輝度信号Yのみに変換する。変換式は、Y =  0.299R + 0.587G + 0.114B
// "YUVフォーマット及び YUV<->RGB変換"を参考にした。http://vision.kuee.kyoto-u.ac.jp/~hiroaki/firewire/yuv.html
// 2013/09/27 : float を止めて、すべてint にした
// 2020/08/24 : RBG 10ビットずつとした
int conv_rgb2y(int rgb){
    int r, g, b, y_f;
    int y;

    g = rgb & 0x3ff;
    b = (rgb>>10) & 0x3ff;
    r = (rgb>>20) & 0x3ff;

    y_f = 306*r + 601*g + 117*b; //y_f = 0.299*r + 0.587*g + 0.114*b;の係数に1024倍した
    y = y_f >> 10; // 1024で割る

    return(y);
}

// ラプラシアンフィルタ
// x0y0 x1y0 x2y0 -1 -1 -1
// x0y1 x1y1 x2y1 -1  8 -1
// x0y2 x1y2 x2y2 -1 -1 -1
int laplacian_fil(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2)
{
    int y;

    y = -x0y0 -x1y0 -x2y0 -x0y1 +8*x1y1 -x2y1 -x0y2 -x1y2 -x2y2;
    if (y<0)
        y = -y;
    else if (y>1023)
        y = 1023;
    return(y);
}


テストベンチの lap_filter_RBG10_tb.cpp を示す。

// lap_filter_RBG10_tb.cpp
// 2020/08/24 by marsee
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ap_int.h>
#include <hls_stream.h>
#include <iostream>
#include <fstream>
#include <ap_axi_sdata.h>

#include "lap_filter_RBG10.h"
#include "bmp_header.h"

int lap_filter_rbg10(hls::stream<ap_axis<32,1,1,1> >& ins, hls::stream<ap_axis<32,1,1,1> >& outs);

int laplacian_fil_soft(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2);
int conv_rgb2y_soft(int rgb);
int lap_filter_rbg10_soft(hls::stream<ap_axis<32,1,1,1> >& ins, hls::stream<ap_axis<32,1,1,1> >& outs, int width, int height);

#define CLOCK_PERIOD 10

int main()
{
    using namespace std;

    hls::stream<ap_axis<32,1,1,1> > ins;
    hls::stream<ap_axis<32,1,1,1> > ins_soft;
    hls::stream<ap_axis<32,1,1,1> > outs;
    hls::stream<ap_axis<32,1,1,1> > outs_soft;
    ap_axis<32,1,1,1> pix;
    ap_axis<32,1,1,1> vals;
    ap_axis<32,1,1,1> vals_soft;

    BITMAPFILEHEADER bmpfhr; // BMPファイルのファイルヘッダ(for Read)
    BITMAPINFOHEADER bmpihr; // BMPファイルのINFOヘッダ(for Read)
    FILE *fbmpr, *fbmpw;
    int *rd_bmp, *hw_lapd;
    int blue, green, red;

    if ((fbmpr = fopen("test.bmp", "rb")) == NULL){ // test.bmp をオープン
        fprintf(stderr, "Can't open test.bmp by binary read mode\n");
        exit(1);
    }
    // bmpヘッダの読み出し
    fread(&bmpfhr.bfType, sizeof(uint16_t), 1, fbmpr);
    fread(&bmpfhr.bfSize, sizeof(uint32_t), 1, fbmpr);
    fread(&bmpfhr.bfReserved1, sizeof(uint16_t), 1, fbmpr);
    fread(&bmpfhr.bfReserved2, sizeof(uint16_t), 1, fbmpr);
    fread(&bmpfhr.bfOffBits, sizeof(uint32_t), 1, fbmpr);
    fread(&bmpihr, sizeof(BITMAPINFOHEADER), 1, fbmpr);

    // ピクセルを入れるメモリをアロケートする
    if ((rd_bmp =(int *)malloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate rd_bmp memory\n");
        exit(1);
    }
    if ((hw_lapd =(int *)malloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate hw_lapd memory\n");
        exit(1);
    }

    // rd_bmp にBMPのピクセルを代入。その際に、行を逆転する必要がある
    for (int y=0; y<bmpihr.biHeight; y++){
        for (int x=0; x<bmpihr.biWidth; x++){
            blue = fgetc(fbmpr);
            green = fgetc(fbmpr);
            red = fgetc(fbmpr);
            rd_bmp[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] = ((green<<2) & 0x3ff) |
                    (((blue<<2) & 0x3ff)<<10) | (((red<<2) & 0x3ff)<<20);
        }
    }
    fclose(fbmpr);

    // ins に入力データを用意する
    for(int i=0; i<5; i++){ // dummy data
        pix.user = 0;
        pix.data = i;
        ins << pix;
    }

    for(int j=0; j < bmpihr.biHeight; j++){
        for(int i=0; i < bmpihr.biWidth; i++){
            pix.data = (ap_int<32>)rd_bmp[(j*bmpihr.biWidth)+i];

            if (j==0 && i==0)   // 最初のデータの時に TUSER を 1 にする
                pix.user = 1;
            else
                pix.user = 0;

            if (i == bmpihr.biWidth-1) // 行の最後でTLASTをアサートする
                pix.last = 1;
            else
                pix.last = 0;

            ins << pix;
            ins_soft << pix;
        }
    }

    lap_filter_rbg10(ins, outs);
    lap_filter_rbg10_soft(ins_soft, outs_soft, bmpihr.biWidth, bmpihr.biHeight);

    // ハードウェアとソフトウェアのラプラシアン・フィルタの値のチェック
    cout << endl;
    cout << "outs" << endl;
    for(int j=0; j < bmpihr.biHeight; j++){
        for(int i=0; i < bmpihr.biWidth; i++){
            outs >> vals;
            outs_soft >> vals_soft;
            ap_int<32> val = vals.data;
            ap_int<32> val_soft = vals_soft.data;

            hw_lapd[(j*bmpihr.biWidth)+i] = (int)val;

            if (val != val_soft){
                printf("ERROR HW and SW results mismatch i = %ld, j = %ld, HW = %d, SW = %d\n", i, j, (int)val, (int)val_soft);
                return(1);
            }
            if (vals.last)
                cout << "AXI-Stream is end" << endl;
        }
    }
    cout << "Success HW and SW results match" << endl;
    cout << endl;

    // ハードウェアのラプラシアンフィルタの結果を temp_lap.bmp へ出力する
    if ((fbmpw=fopen("temp_lap.bmp", "wb")) == NULL){
        fprintf(stderr, "Can't open temp_lap.bmp by binary write mode\n");
        exit(1);
    }
    // BMPファイルヘッダの書き込み
    fwrite(&bmpfhr.bfType, sizeof(uint16_t), 1, fbmpw);
    fwrite(&bmpfhr.bfSize, sizeof(uint32_t), 1, fbmpw);
    fwrite(&bmpfhr.bfReserved1, sizeof(uint16_t), 1, fbmpw);
    fwrite(&bmpfhr.bfReserved2, sizeof(uint16_t), 1, fbmpw);
    fwrite(&bmpfhr.bfOffBits, sizeof(uint32_t), 1, fbmpw);
    fwrite(&bmpihr, sizeof(BITMAPINFOHEADER), 1, fbmpw);

    // RGB データの書き込み、逆順にする
    for (int y=0; y<bmpihr.biHeight; y++){
        for (int x=0; x<bmpihr.biWidth; x++){
            green = (hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] & 0x3ff)>>2;
            blue = ((hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] >> 10) & 0x3ff)>>2;
            red = ((hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x]>> 20) & 0x3ff)>>2;

            fputc(blue, fbmpw);
            fputc(green, fbmpw);
            fputc(red, fbmpw);
        }
    }
    fclose(fbmpw);
    free(rd_bmp);
    free(hw_lapd);

    return 0;
}

int lap_filter_rbg10_soft(hls::stream<ap_axis<32,1,1,1> >& ins, hls::stream<ap_axis<32,1,1,1> >& outs, int width, int height){
    ap_axis<32,1,1,1> pix;
    ap_axis<32,1,1,1> lap;
    unsigned int **line_buf;
    int pix_mat[3][3];
    int lap_fil_val;
    int i;

    // line_buf の1次元目の配列をアロケートする
    if ((line_buf =(unsigned int **)malloc(sizeof(unsigned int *) * 2)) == NULL){
        fprintf(stderr, "Can't allocate line_buf[3][]\n");
        exit(1);
    }

    // メモリをアロケートする
    for (i=0; i<2; i++){
        if ((line_buf[i]=(unsigned int *)malloc(sizeof(unsigned int) * width)) == NULL){
            fprintf(stderr, "Can't allocate line_buf[%d]\n", i);
            exit(1);
        }
    }

    do {    // user が 1になった時にフレームがスタートする
        ins >> pix;
    } while(pix.user == 0);

    for (int y=0; y<height; y++){
        for (int x=0; x<width; x++){
            if (!(x==0 && y==0))    // 最初の入力はすでに入力されている
                ins >> pix; // AXI4-Stream からの入力

            for (int k=0; k<3; k++){
                for (int m=0; m<2; m++){
                    pix_mat[k][m] = pix_mat[k][m+1];
                }
            }
            pix_mat[0][2] = line_buf[0][x];
            pix_mat[1][2] = line_buf[1][x];

            int y_val = conv_rgb2y_soft(pix.data);
            pix_mat[2][2] = y_val;

            line_buf[0][x] = line_buf[1][x];    // 行の入れ替え
            line_buf[1][x] = y_val;

            lap_fil_val = laplacian_fil_soft(    pix_mat[0][0], pix_mat[0][1], pix_mat[0][2],
                                        pix_mat[1][0], pix_mat[1][1], pix_mat[1][2],
                                        pix_mat[2][0], pix_mat[2][1], pix_mat[2][2]);
            lap.data = (lap_fil_val<<20)+(lap_fil_val<<10)+lap_fil_val; // RGB同じ値を入れる

            if (x<2 || y<2) // 最初の2行とその他の行の最初の2列は無効データなので0とする
                lap.data = 0;

            if (x==0 && y==0) // 最初のデータでは、TUSERをアサートする
                lap.user = 1;
            else
                lap.user = 0;

            if (x == (HORIZONTAL_PIXEL_WIDTH-1))    // 行の最後で TLAST をアサートする
                lap.last = 1;
            else
                lap.last = 0;

            outs << lap;    // AXI4-Stream へ出力
        }
    }

    for (i=0; i<2; i++)
        free(line_buf[i]);
    free(line_buf);

    return 0;
}

// RGBからYへの変換
// RGBのフォーマットは、{8'd0, R(8bits), G(8bits), B(8bits)}, 1pixel = 32bits
// 輝度信号Yのみに変換する。変換式は、Y =  0.299R + 0.587G + 0.114B
// "YUVフォーマット及び YUV<->RGB変換"を参考にした。http://vision.kuee.kyoto-u.ac.jp/~hiroaki/firewire/yuv.html
// 2013/09/27 : float を止めて、すべてint にした
int conv_rgb2y_soft(int rgb){
    int r, g, b, y_f;
    int y;

    g = rgb & 0x3ff;
    b = (rgb>>10) & 0x3ff;
    r = (rgb>>20) & 0x3ff;

    y_f = 306*r + 601*g + 117*b; //y_f = 0.299*r + 0.587*g + 0.114*b;の係数に1024倍した
    y = y_f >> 10; // 1024で割る

    return(y);
}

// ラプラシアンフィルタ
// x0y0 x1y0 x2y0 -1 -1 -1
// x0y1 x1y1 x2y1 -1  8 -1
// x0y2 x1y2 x2y2 -1 -1 -1
int laplacian_fil_soft(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2)
{
    int y;

    y = -x0y0 -x1y0 -x2y0 -x0y1 +8*x1y1 -x2y1 -x0y2 -x1y2 -x2y2;
    if (y<0)
        y = -y;
    else if (y>1023)
        y = 1023;
    return(y);
}


bmp_header.h は”ikwzm さんの”Ultra96/Ultra96-V2 向け Debian GNU/Linux で XRT(Xilinx Runtime) を動かす”をやってみる8(ソーベル・フィルタ編1)”を参照ください。

さて、Vivado HLS 2019.1 で lap_filter_RBG10 プロジェクトを作成した。
New Vivado HLS Project ダイアログの Project Configuration 画面を示す。
genasys_zu_filter_1_200824.png

New Vivado HLS Project ダイアログの Solution Configuration 画面を示す。
Clock Period は 6.667 ns つまり 150 MHz にして、Prat は xczu3eg-sfvc784-1-e に設定した。
genasys_zu_filter_2_200824.png

Vivado HLS 2019.1 で lap_filter_RBG10 プロジェクトを示す。
genasys_zu_filter_4_200825.png

C シミュレーションを実行した。
genasys_zu_filter_5_200825.png

成功した。問題ないようだ。
lap_filter_RBG10/solution1/csim/build ディレクトリを示す。
genasys_zu_filter_6_200825.png

temp_lap.bmp を見るとエッジが表示されているのが分かる。
なお、今回はシャープにエッジが出ていない様に見えるが、これは、今までは、マイナス側のエッジを切ってしまっていたが、今回は絶対値としたことで、マイナス側のエッジが表示されているからだ。
具体的には、 laplacian_fil() 関数の
if (y<0)
  y = -y;
の部分となる。以前は
 y = 0;
と書いてあった。
  1. 2020年08月26日 04:48 |
  2. Genesys_ZU
  3. | トラックバック:0
  4. | コメント:0

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック URL
https://marsee101.blog.fc2.com/tb.php/4984-6622231f
この記事にトラックバックする(FC2ブログユーザー)